Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Changes in soil characteristics during landfill leachate irrigation of Populus deltoides.

Identifieur interne : 003352 ( Main/Exploration ); précédent : 003351; suivant : 003353

Changes in soil characteristics during landfill leachate irrigation of Populus deltoides.

Auteurs : Vesna Zupanc [Slovénie] ; Maja Zupan I Justin

Source :

RBID : pubmed:20554192

Descripteurs français

English descriptors

Abstract

The effects of wastewater application on electrical conductivity, water retention and water repellency of soils planted with Populus deltoides (eastern cottonwood) and irrigated with different concentrations of landfill leachate and compost wastewater, tap water and nutrient solution were evaluated. Substrate water content at field capacity (-0.033 MPa) and at permanent wilting point (-1.5 MPa) was determined with a pressure plate extractor to assess available water capacity of the substrate. A water drop penetration test was used to determine substrate water repellency. The biomass of nutrient and landfill leachate treatments was significantly (P<0.05) greater compared to the tap water and compost wastewater treatments. All treatments increased substrate water content at field capacity and at permanent wilting point. Landfill leachate significantly increased available water capacity (up to 52%); treatment with compost wastewater significantly decreased it (25-47%). All substrates showed increased water repellency after the experiment at field capacity and permanent wilting point comparing to the original substrate. The strongest influence on water repellency at both field capacity and permanent wilting point showed irrigation with compost wastewater and tap water. Pronounced influence on substrate's water repellency of compost wastewater could be contributed to a high content of dissolved organic carbon, whereas Mg and Ca cations caused flocculation and consequent water repellency of the substrate irrigated with tap water. The results indicate that soil physical characteristics must be closely monitored when landfill leachate and compost wastewater are used for irrigation to avoid long term detrimental effects on the soil, and consequently on the environment. Due to the complexity of the compost wastewater quality the latter should be applied on open fields only after prior pre-treatment to reduce dissolved organic carbons, or alternatively, compost wastewater should be added only intermittently and in diluted ratios.

DOI: 10.1016/j.wasman.2010.05.004
PubMed: 20554192


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Changes in soil characteristics during landfill leachate irrigation of Populus deltoides.</title>
<author>
<name sortKey="Zupanc, Vesna" sort="Zupanc, Vesna" uniqKey="Zupanc V" first="Vesna" last="Zupanc">Vesna Zupanc</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1001 Ljubljana, Slovenia. vesna.zupanc@bf.uni-lj.si</nlm:affiliation>
<country xml:lang="fr">Slovénie</country>
<wicri:regionArea>Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1001 Ljubljana</wicri:regionArea>
<wicri:noRegion>SI-1001 Ljubljana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Justin, Maja Zupan I" sort="Justin, Maja Zupan I" uniqKey="Justin M" first="Maja Zupan I" last="Justin">Maja Zupan I Justin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20554192</idno>
<idno type="pmid">20554192</idno>
<idno type="doi">10.1016/j.wasman.2010.05.004</idno>
<idno type="wicri:Area/Main/Corpus">003155</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003155</idno>
<idno type="wicri:Area/Main/Curation">003155</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003155</idno>
<idno type="wicri:Area/Main/Exploration">003155</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Changes in soil characteristics during landfill leachate irrigation of Populus deltoides.</title>
<author>
<name sortKey="Zupanc, Vesna" sort="Zupanc, Vesna" uniqKey="Zupanc V" first="Vesna" last="Zupanc">Vesna Zupanc</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1001 Ljubljana, Slovenia. vesna.zupanc@bf.uni-lj.si</nlm:affiliation>
<country xml:lang="fr">Slovénie</country>
<wicri:regionArea>Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1001 Ljubljana</wicri:regionArea>
<wicri:noRegion>SI-1001 Ljubljana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Justin, Maja Zupan I" sort="Justin, Maja Zupan I" uniqKey="Justin M" first="Maja Zupan I" last="Justin">Maja Zupan I Justin</name>
</author>
</analytic>
<series>
<title level="j">Waste management (New York, N.Y.)</title>
<idno type="eISSN">1879-2456</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Calcium (chemistry)</term>
<term>Cations (MeSH)</term>
<term>Electrochemistry (methods)</term>
<term>Environment (MeSH)</term>
<term>Environmental Monitoring (methods)</term>
<term>Magnesium (chemistry)</term>
<term>Populus (metabolism)</term>
<term>Pressure (MeSH)</term>
<term>Refuse Disposal (methods)</term>
<term>Soil (chemistry)</term>
<term>Soil Pollutants (analysis)</term>
<term>Water (chemistry)</term>
<term>Water Movements (MeSH)</term>
<term>Water Pollutants, Chemical (analysis)</term>
<term>Water Purification (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Calcium (composition chimique)</term>
<term>Cations (MeSH)</term>
<term>Eau (composition chimique)</term>
<term>Environnement (MeSH)</term>
<term>Magnésium (composition chimique)</term>
<term>Mouvements de l'eau (MeSH)</term>
<term>Polluants chimiques de l'eau (analyse)</term>
<term>Polluants du sol (analyse)</term>
<term>Populus (métabolisme)</term>
<term>Pression (MeSH)</term>
<term>Purification de l'eau (méthodes)</term>
<term>Sol (composition chimique)</term>
<term>Surveillance de l'environnement (méthodes)</term>
<term>Électrochimie (méthodes)</term>
<term>Élimination des déchets (méthodes)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Soil Pollutants</term>
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Calcium</term>
<term>Magnesium</term>
<term>Soil</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Cations</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Polluants chimiques de l'eau</term>
<term>Polluants du sol</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Calcium</term>
<term>Eau</term>
<term>Magnésium</term>
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Electrochemistry</term>
<term>Environmental Monitoring</term>
<term>Refuse Disposal</term>
<term>Water Purification</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Purification de l'eau</term>
<term>Surveillance de l'environnement</term>
<term>Électrochimie</term>
<term>Élimination des déchets</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Environment</term>
<term>Pressure</term>
<term>Water Movements</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cations</term>
<term>Environnement</term>
<term>Mouvements de l'eau</term>
<term>Pression</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effects of wastewater application on electrical conductivity, water retention and water repellency of soils planted with Populus deltoides (eastern cottonwood) and irrigated with different concentrations of landfill leachate and compost wastewater, tap water and nutrient solution were evaluated. Substrate water content at field capacity (-0.033 MPa) and at permanent wilting point (-1.5 MPa) was determined with a pressure plate extractor to assess available water capacity of the substrate. A water drop penetration test was used to determine substrate water repellency. The biomass of nutrient and landfill leachate treatments was significantly (P<0.05) greater compared to the tap water and compost wastewater treatments. All treatments increased substrate water content at field capacity and at permanent wilting point. Landfill leachate significantly increased available water capacity (up to 52%); treatment with compost wastewater significantly decreased it (25-47%). All substrates showed increased water repellency after the experiment at field capacity and permanent wilting point comparing to the original substrate. The strongest influence on water repellency at both field capacity and permanent wilting point showed irrigation with compost wastewater and tap water. Pronounced influence on substrate's water repellency of compost wastewater could be contributed to a high content of dissolved organic carbon, whereas Mg and Ca cations caused flocculation and consequent water repellency of the substrate irrigated with tap water. The results indicate that soil physical characteristics must be closely monitored when landfill leachate and compost wastewater are used for irrigation to avoid long term detrimental effects on the soil, and consequently on the environment. Due to the complexity of the compost wastewater quality the latter should be applied on open fields only after prior pre-treatment to reduce dissolved organic carbons, or alternatively, compost wastewater should be added only intermittently and in diluted ratios.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20554192</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>02</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-2456</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2010</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Waste management (New York, N.Y.)</Title>
<ISOAbbreviation>Waste Manag</ISOAbbreviation>
</Journal>
<ArticleTitle>Changes in soil characteristics during landfill leachate irrigation of Populus deltoides.</ArticleTitle>
<Pagination>
<MedlinePgn>2130-6</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.wasman.2010.05.004</ELocationID>
<Abstract>
<AbstractText>The effects of wastewater application on electrical conductivity, water retention and water repellency of soils planted with Populus deltoides (eastern cottonwood) and irrigated with different concentrations of landfill leachate and compost wastewater, tap water and nutrient solution were evaluated. Substrate water content at field capacity (-0.033 MPa) and at permanent wilting point (-1.5 MPa) was determined with a pressure plate extractor to assess available water capacity of the substrate. A water drop penetration test was used to determine substrate water repellency. The biomass of nutrient and landfill leachate treatments was significantly (P<0.05) greater compared to the tap water and compost wastewater treatments. All treatments increased substrate water content at field capacity and at permanent wilting point. Landfill leachate significantly increased available water capacity (up to 52%); treatment with compost wastewater significantly decreased it (25-47%). All substrates showed increased water repellency after the experiment at field capacity and permanent wilting point comparing to the original substrate. The strongest influence on water repellency at both field capacity and permanent wilting point showed irrigation with compost wastewater and tap water. Pronounced influence on substrate's water repellency of compost wastewater could be contributed to a high content of dissolved organic carbon, whereas Mg and Ca cations caused flocculation and consequent water repellency of the substrate irrigated with tap water. The results indicate that soil physical characteristics must be closely monitored when landfill leachate and compost wastewater are used for irrigation to avoid long term detrimental effects on the soil, and consequently on the environment. Due to the complexity of the compost wastewater quality the latter should be applied on open fields only after prior pre-treatment to reduce dissolved organic carbons, or alternatively, compost wastewater should be added only intermittently and in diluted ratios.</AbstractText>
<CopyrightInformation>Copyright © 2010 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zupanc</LastName>
<ForeName>Vesna</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1001 Ljubljana, Slovenia. vesna.zupanc@bf.uni-lj.si</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Justin</LastName>
<ForeName>Maja Zupančič</ForeName>
<Initials>MZ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>07</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Waste Manag</MedlineTA>
<NlmUniqueID>9884362</NlmUniqueID>
<ISSNLinking>0956-053X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002412">Cations</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014874">Water Pollutants, Chemical</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>I38ZP9992A</RegistryNumber>
<NameOfSubstance UI="D008274">Magnesium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002412" MajorTopicYN="N">Cations</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004563" MajorTopicYN="N">Electrochemistry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="N">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004784" MajorTopicYN="N">Environmental Monitoring</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008274" MajorTopicYN="N">Magnesium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011312" MajorTopicYN="N">Pressure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012037" MajorTopicYN="N">Refuse Disposal</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014872" MajorTopicYN="N">Water Movements</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014874" MajorTopicYN="N">Water Pollutants, Chemical</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018508" MajorTopicYN="N">Water Purification</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>11</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2010</Year>
<Month>05</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>05</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20554192</ArticleId>
<ArticleId IdType="pii">S0956-053X(10)00263-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.wasman.2010.05.004</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Slovénie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Justin, Maja Zupan I" sort="Justin, Maja Zupan I" uniqKey="Justin M" first="Maja Zupan I" last="Justin">Maja Zupan I Justin</name>
</noCountry>
<country name="Slovénie">
<noRegion>
<name sortKey="Zupanc, Vesna" sort="Zupanc, Vesna" uniqKey="Zupanc V" first="Vesna" last="Zupanc">Vesna Zupanc</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003352 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003352 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20554192
   |texte=   Changes in soil characteristics during landfill leachate irrigation of Populus deltoides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20554192" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020